Login | Sign up

PhD position on Complex Networks and Machine Learning at the University of Exeter

As the world consumes more meat and derived products, markets and producers are put in a position of increased pressure to deliver their products efficiently. In a global market, meat products produced in one part of the world can easily find its way across the globe. In order to fulfil demand, livestock producers are constantly moving the animals from place to place so that they can graze in new pastures, or because of trade, or even to have the animals taken to slaughterhouses. As we increase the movement of cattle within countries and even across countries, we also increase the chance of global pandemics which could cause huge financial losses to producers while making consumers pay a higher cost due to scarcity of the product. Epidemic spreading is an active area of research, and computer and analytical models of mobility have been successfully used in the prediction of human diseases such as H1N1, Ebola, Flu, etc. Such modelling may be also used to capture the idiosyncrasies of cattle mobility and help us prevent financial losses due to the spread of foot and mouth (FMD), brucellosis and others. This project aims at modelling the mobility of cattle in Brazil with the intent of helping prevent disease spread in that country. Due to the scale of the datasets and the nature of the country (continental size), livestock transportation in Brazil may include illegal transportation due to the difficulty in auditing all movement. Illegal trade of livestock may hinder any effort of curtailing disease spread; if the amount of illegal trade is large enough, official measures of containment are nullified. The project will look at modelling illegal cattle trade and the effect of this to epidemic thresholds. Moreover, given the continental size of the country, the modelling also has to carefully consider variables such as: mode of transportation, quality of roads, cross-contamination due to the sharing of vehicles, etc. The outcome of this of this project is a more general model of epidemic spread in cattle which can serve as the basis for other livestock modelling. The work is quite multidisciplinary and will involve partners in Brazil. This work also links well with the current global effort to understand cattle movement at the world-wide level. 

The applicant should be willing to work with data science models, machine learning, network science, python programming language (desirable), statistical modelling and have a strong enough background in computer science and maths to enable the applicant to carry independent 

CountryUnited Kingdom
LabUnivesrity of Exeter
Duration/Period3.5 years
Deadline14/06/2019 22:00

Recover your password

Please, provide the email you used to register. We will send an email to that address with a link that will take you to the reset password page. After resetting your password you will be automatically logged in to the system.

Already a member?

If you had an account on the old website, please provide the email you used to register there. After resetting your password you will be automatically signed in to the system.

Already have an account? Log in